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1. Introduction 

 

Many investigations related to generalized closed sets and generalized continuous functions have been 

published in various forms of closed sets and continuous functions. In 1937, Stone [15] introduced the 

notion of regular open sets. In 1965, Njastad [13] introduced the concept of -open sets. In 1968, the 

notion of -open sets were introduced by Zaitsev [18] which are weaker form of regular open sets in 
topological spaces. In 1969, Singal and Mathur [14] introduced and studied the concept of nearly compact 

spaces. In 1970, Levine [10] initiated the study of so called generalized closed (briefly g-closed) sets. In 

1993, Maki et al. [12] introduced the concept of -T0 and -T0 spaces. In 1994, Maki et al. [11] introduced 

the notion of g-closed sets. In 2000, Dontchev and Noiri [5] introduced the notion of g-closed sets. In 

2007, Arockiarani and Janaki [1] introduced the notion of g-closed sets in topological spaces. In 2009, 

Janaki [8] Studied gα-closed sets in topology. In 2019, Subbulakshmi, Sumathi, Indirani [16] introduced 

and investigated the notion of -open sets. Recently, Kumar and Sharma [9] introduced and investigated 

the notion of -Tk (k = 0, 1, 2) and -Rk (k = 0, 12) axioms in topological spaces. 
 

2. Preliminaries 

 

Throughout this paper, spaces (X, ), (Y, ), and (Z, ) (or simply X, Y and Z) always mean topological 

spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. 

The closure of A and interior of A are denoted by Cl(A) and Int(A)  respectively. A subset A is said to be 

regular open [15] (resp. regular closed [15]) if A  Int(Cl(A))  (resp. A  Cl(Int(A)). The finite union of 

regular open sets is said to be -open [18]. The complement of a -open set is said to be -closed [18].  

 

Definition 2.1. A subset A of a topological space (X, ) is said to be  

(i) -open [13] if A  Int(Cl(Int(A))). 

(ii) -open [16] if A  In(Cl(Int(A)))  Cl(Int(A)). 

(iii) -closed [16] if A  Cl(Int(Cl(A)))  Int(Cl(A)). 

 

The complement of a -open set is called -closed. The intersection of all -closed (resp. -closed) sets 

containing A, is called -closure (resp. -closure) of A, and is denoted by -Cl(A) (resp. -Cl(A)). The 

-interior of A, denoted by -Int(A) is defined as union of all -open sets contained in A. We denote the 

family of all -open (resp. -closed) sets of a topological space by -O(X) (resp. -C(X)).  

 

Definition 2.2. A subset A of a space (X,) is said to be 

(1) generalized closed (briefly g-closed) [10] if Cl(A) U whenever A U and U  

(2) g-closed [5] if Cl(A)  U whenever A U and U is -open in X. 

(3) -generalized closed (briefly g-closed) [11] if -Cl(A)U whenever A  U and U  

http://www.jetir.org/


© 2021 JETIR June 2021, Volume 8, Issue 6                                                          www.jetir.org (ISSN-2349-5162) 

JETIR2106187 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 368 
 

(4) g-closed [1] if -Cl(A)  U whenever A U and U is -open in X. 

(5) generalized -closed (briefly g-closed) [17] if -Cl(A) U whenever A U and U  

(6) g-open (resp. g-open, g-open, g-open, g-open) set if the complement of A is g-closed (resp. g-

closed, g-closed, g-closed, g-closed). 

 

Lemma 2.3. For any subsets A and B of a space (X, ) the following hold:  

(a) -Cl(A) = A  [Cl(Int(Cl(A)))  Int(Cl(A))],  

(b) -Cl(X  A) = X  -Int(A),  

(c) x  -Cl(A) if and only if A  U   for every U  -O(X, x),  

(d) A  -C(X) if and only if A = -Cl(A).  
 

3. g-closed Sets 

 

Definition 3.1. A subset A of a space (X,) is said to be g-closed if -Cl(A)  U whenever A U and 

U is -open in X. The family of all g-closed subsets of X will be denoted by g-C(X).  

 

Theorem 3.2. Every closed set is g-closed. 

Proof. Let A be a closed set in X. Let U be a -open set in X such that A U. Since A is closed, that is, 

Cl(A) = A, Cl(A) U. But we have -Cl(A)  Cl(A) U. Therefore -Cl(A) U. Hence A is g-
closed in X. 

 

Theorem 3.3. For a topological space X the followings hold:  

(1) Every g-closed set is g-closed.  

(2) Every g -closed set is g-closed.  

(3) Every -closed set is g-closed.  

(4) Every g-closed set is g-closed.  

(5) Every g-closed set is g-closed.  

Proof.  

(1) Let A be a g-closed set in X. Let U be a -open set in X such that A U. Since every -open set is 

open and since A is g-closed, that is, Cl(A) U. But we have -Cl(A)  Cl(A) U. Therefore -Cl(A) 

U. Hence A is g-closed in X. 
 

(2) Let A be a g-closed set in X. Let U be a -open set in X such that A U. Since A is g-closed, that is, 

Cl(A) U. But we have -Cl(A)  Cl(A) U. Therefore -Cl(A) U. Hence A is g-closed in X. 

(3) Let A be a -closed set in X. Let U be a -open set in X such that A U. Since A is -closed, that is, 

-Cl(A) = A, -Cl(A) U. But we have -Cl(A)  -Cl(A) U. Therefore -Cl(A) U. Hence A is 

g-closed in X. 

 

(4) Let A be a g-closed set in X. Let U be a -open set in X such that A U. Since every -open set is 

open and since A is g-closed, that is, -Cl(A) U. But we have -Cl(A)  -Cl(A) U. Therefore -

Cl(A) U. Hence A is g-closed in X. 
 

(5) Let A be a g-closed set in X. Let U be a -open set in X such that A U. Since A is g-closed, that 

is, -Cl(A) U. But we have -Cl(A) -Cl(A) U. Therefore -Cl(A) U. Hence A is g-closed in 
X. 

 

Remark 3.4. From the above definitions, theorems and known results the relationship between g-closed 

sets and some other existing generalized closed sets are implemented in the following Figure: 

 

              closed        g-closed    g-closed 

                              

          -closed        g-closed   g-closed  

                                                

-closed        g-closed   g-closed  
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

Where none of the implications is reversible as can be seen from the following examples: 

 

Example 3.5. Let X = {a, b, c, d} and = {, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}. Then A = {a, b, c} 

and B = {a, b, d} are g-closed as well as g-closed but not closed.
 

Example 3.6. Let X = {a, b, c, d} and = {, {a}, {d}, {a, d}, {c, d}, {a, c, d}, X}. Then A = {c} is g-

closed as well as g-closed. But it is neither closed nor g-closed. It is not g-closed. 
 

Example 3.7. Let X = {a, b, c, d} and = {, {c}, {d}, {c, d}, {b, c, d}, X}. Then A = {b} is g-closed, 

g-closed, g-closed, g-closed, g-closed. But it is closed.



Example 3.8. Let X = {a, b, c, d} and = {, {a}, {c}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, 

X}. Then A = {a, b} is g-closed as well as g-closed but not closed. But it is neither closed nor g-

closed. 

 

Example 3.9. Let X = {a, b, c} and = {, {a}, {c}, {a, c}, X}. Then A = {c} is -closed as well as g-

closed but not -closed.



Example 3.10. Let X = {a, b, c} and = {, {a}, {b, c}, X}. Then A = {a, b} is g-closed as well as g-

closed but not closed.

 

Theorem 3.11. For g-closed sets of a space (X, ) the following properties hold: 

(a) Every finite union of g-closed sets is always a g-closed set. 

(b) Even a countable union of g-closed sets need not be a g-closed set. 

(c) Even a finite intersection of g-closed sets may fail to be a g-closed set. 

Proof.  

(a) Let A and B be any two g-closed sets. Therefore -Cl(A)  U and -Cl(B)  U whenever A  U, B 

 U and U is π-open. Let A  B  U where U is π-open. 

Since, -Cl(A  B)  -Cl(A)  -Cl(B)  U, we have A  B is πg-closed. 
 

(b) Let R be the real line with the usual topology. Every singleton is πg-closed. However, A = {1 / i : i = 

2, 3, …….} is not πg-closed, since A  (0, 1) which is π-open but -Cl(A)   (0, 1). 
 

(c) Let X = {a, b, c, d} and let   = {, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}. Let A = {a, b, c} and B = 

{a, b, d} are πg-closed sets. But A  B = {a, b}  {a, b} which is π-open. -Cl(A  B)  {a, b}. Hence 

A  B is not πg-closed. 

 

Theorem 3.12: If A is πg-closed and B is any set A  B  -Cl(A) then B is πg-closed. 

Proof: Since A is πg-closed, -Cl(A)  U whenever A  U and U is π-open. Let B  U and U is π-open. 

Since B  -Cl(A), -Cl(B)  -Cl(A)  U. Hence B is πg-closed. 

 

Theorem 3.13. Let A be a πg-closed set in X. Then -Cl(A) – A does not contain any nonempty π-closed 

set. 

Proof. Let F be a nonempty π-closed set such that F  -Cl(A) – A. Then F  -Cl(A)  (X – A)  (X – 

A) implies A  X – F where X – F is π-open. Therefore -Cl(A)   X – F implies F  (-Cl(A)c. Now F  

-Cl(A)  (-Cl(A))c implies F is empty. 

 

Reverse implication does not hold. 

 

Example 3.14. Let X = {a, b, c, d, e} and let  = {, {a, b}, {c, d}, {a, b, c, d}, X}. Let A = {c} then -

Cl(A) = {c, d, e}, -Cl(A) – A = {d, e} does not contain any nonempty regular closed set but A is not πg-
closed set. 

 

Corollary 3.15. Let A be πg-closed. A is -closed iff -Cl(A) – A is π-closed. 
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Proof.  Let A be -closed set then A = -Cl(A) implies -Cl(A) – A  =  which is π-closed. 

Conversely, if -Cl(A) – A is π-closed then A is -closed. 

 

Theorem 3.16. If A is π-open and πg-closed. Then A is -closed and hence clopen. 

Proof. Let A be regular open. Since A is πg-closed, -Cl(A)  A implies A is -closed. Hence A is 

closed. (Since every π-open -closed set is closed). Therefore A is clopen. 
 

Definition 3.17. Let (X, ) be a topological space, A  X and x  X. Then x is said to be a -limit point 

of A iff every -open set containing x contains a point of A different from x, and the set of all -limit 

points of A is said to be the - derived set of A and is denoted by D(A).  

 

Usual derived set of A is denoted by D(A).  

 

The proof of the following result is analogous to the well known ones.  

 

Lemma 3.18. Let (X, ) be a topological space and A  X. Then -Cl(A) = A  D(A). 
 

Theorem 3.19. Let A and B be πg-closed sets in (X, ) such that Cl(A) = -Cl(A) and Cl(B) = -Cl(B). 

Then A  B is πg-closed. 

Proof. Let A  B  U and U is -open in (X, ). Then -Cl(A)  U and -Cl(B)  U. Now, Cl(A  B) = 

Cl(A)  Cl(B) = -Cl(A)  -Cl(B)  U. But -Cl(A  B)  Cl(A  B). So, -Cl(A  B)  U and hence 

A  B is πg-closed. 

 

From the fact that D(A)  D(A) and Lemma 3.18 we have the following, 
 

Remark 3.20. For any subset A  X such that D(A)  D(A). Then Cl(A) = -Cl(A). 

 

Theorem 3.21.  For a space X, the following are equivalent:  

(a) X is extremally disconnected, 

(b) Every subset of X is πg-closed, 

(c) The topology on X generated by πg-closed sets is the discrete ones. 

Proof.  (a)  (b). 

Assume that X is extremally disconnected. Let A  U where U is π-open in X. Since U is π-open, it is the 

finite union of regular open sets and X is extremally disconnected, U is finite union of clopen sets and 

hence U is clopen. Therefore -cl(A)  cl(A)  cl(U)  U implies A is πg-closed. 
 

(b)  (a). 

Let A be a regular open set of X. Since A is πg-closed by Theorem 3.16, A is clopen. Hence X is 
extremally disconnected. 

 

(b)  (c) is obvious. 

4. g-open sets 

 

Definition 4.1. Let (X, ) be a topological space. A subset A of X is called -generalized -open (briefly 

g-open) iff its complement is πg-closed set. We denote the family of all πg-open (resp. πg-closed) 

sets of a topological space by πg-O(X) (resp. πg-C(X)). 

 

Lemma 4.2. If A be a subset of X, then 

(a) -Cl(X – A) = X – -Int(A). 

(b) -Int(X – A) = X – -Cl(A). 

 

Theorem 4.3. A subset A of a space X is πg-open iff F  -Int(A) whenever F is π-closed and F   A. 

Proof. Let F be π-closed set such that F  A. Since X – A is πg-closed and X – A  X – F where F  -

Int(A). Conversely. 
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Let F  -Int(A) where F is π-closed and F  A. Since F  A and X – F is π-open, -Cl(X – A) = X –-

Int(A)  X – F. Therefore A is πg-open. 

 

Theorem 4.4. If -Int(A)  B  A and A πg-open then B is πg-open. 

Proof: Since -Int(A)  B  A, by Theorem 3.12, -Cl(X – A)  (X – B) implies B is πg-open. 

Remark 4.5. For any A  X, -Int(-Cl(A) – A ) = . 
 

Theorem 4.6. If A   X is πg-closed then -Cl(A) – A is πg-open. 

Proof. Let A be πg-closed and F be a π-closed set such that F  -Cl(A) – A. By Theorem 3.13, F =  

implies F  -Int(-Cl(A) – A)). By Theorem 4.3, -cl(A) – A is πg-open. 

 

Converse of the above theorem is not true. 

 

Example 4.7. Let X = {a, b, c} and let  = {, {a}, {b}, {a, b}, X}. Let A = {b}. Then A is not πg-closed 

but -Cl(A) – A = {a, b} is πg-open. 

 

Definition 4.8. A topological space X is called a πg-T1/2 space if every πg-closed set is -closed.  
 

Theorem 4.9. Let (X, ) be a topological space.  

(a) -O(X)  πg-O(X),  

(b) A space X is πg-T1/2 iff -O(X) = πg-O(X).  

Proof. (a) Let A be a -open set, then X  A is -closed so X  A is πg-closed. Thus A is πg-open. 

Hence -O(X)  πg-O(X).  

 

(b) Necessity: Let (X, ) be πg-T1/2 space. Let A be πg-open. Then X  A is πg-closed. By hypothesis, 

X  A is -closed. Thus A is -open. Therefore -O(X) = πg-O(X).  

Sufficiency: Let -O(X) = πg-O(X). Let A be πg-closed. Then X  A is πg-open. X  A is -open. 

Hence A is -closed. This implies (X, ) is πg-T1/2 space.  

 

Lemma 4.10. Let A be a subset of X and x  X. Then x  -Cl(A) iff V  {x}   for every -open set V 
containing x.  

 

Theorem 4.11. For a topological space X the following are equivalent:  

(a) X is πg-T1/2 space.  

(b) Every singleton set is either π-closed or -open.  

Proof. (a)  (b): Let X be a πg-T1/2 space. Let x  X and assuming that {x} is not π-closed. Then clearly 

X  {x} is not π-open. Hence X  {x} is trivially a πg-closed. Since X is πg-T1/2 space, X  {x} is -

closed. Therefore {x} is -open.  

 

(b)  (a): Assume every singleton set of X is either π-closed or -open. Let A be a πg-closed set. Let x  

-Cl(A).  

 

Case I: Let {x} be π-closed. Suppose x does not belong to A. Then x  -Cl(A)  A. By Theorem 3.7, x 

 A. Hence -Cl(A)  A.  

 

Case II: Let {x} be -open. Since x  -Cl(A), we have A  {x}   implies x  A. Therefore -Cl(A)  

A. Therefore A is -closed. 

 

5. πg-continuous and πg-irresolute Functions  

 

Definition 5.1. A function f : X → Y is called:  

(a) -continuous [12] (resp. -continuous [17]) if f −1(V) is -closed (resp. -closed) in X for every 

closed set V of Y,  

(b) g-continuous [3] (resp. g-continuous [11], g-continuous [17]) if f −1(V) is g-closed (resp. g-

closed, g-closed) in X for every closed set V of Y,  
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(c) g-continuous [5] (resp. g-continuous [1], g-continuous) if f −1(V) is g-closed (resp. g-

closed, g-closed) in X for every closed set V of Y,  

 

Definition 5.2. A function f : X → Y is called -irresolute [9] (resp. g-irresolute [17], g-irresolute) 

if f −1(V) is -closed (resp. g-closed, g-closed)  in X for every -closed (resp. g-closed, g-closed) 

set V of Y.  

 

Proposition 5.3. Every g-irresolute function is g-continuous.  
 

Remark 5.4. From the above definitions, proposition and known results, we have following diagram: 

 

                  -continuous        

                    

          continuous        g- continuous    g- continuous 

                                                            

      - continuous        g- continuous   g- continuous  

                                                                          

- continuous        g- continuous   g- continuous  



-irresolute                    g-irresolute   g-irresolute 



Where none of the implications is reversible as can be seen from the following examples: 

 

Example 5.5. Let X = {x, y, z},  = {, X, {x}}, Y = {a, b} and   = {, Y, {a}}. Define f : (X, )  (Y, 

) as follows: f(x) = f(z) = b and f(y) = x. Then f is g-continuous as well as g-continuous. It is also g-
continuous but not continuous.  

 

Example 5.6. Let X = {x, y, z},  = {, X, {x}, {y}, {x, y}} and f : (X, )  (X, ) defined as follows: 

f(x) = f(y) = x and f(z) = z. Then f is -continuous as well as continuous.  
 

Example 5.7. Let X = Y = {x, y, z},  = {, X, {x}, {z}, {x, z}} and   = {, Y, {x}, {y}, {x, y}}. Define 

f : (X, )  (Y, ) as follows: f(x) = x, f(y) = z and f(z) = y. Then f 1({z}) = {y}, f 1({x, z}) = {x, y}, f 
1({y, z}) = {y, z}. Therefore, f is g-continuous as well as g-continuous.  

 

Example 5.8. Let X = Y = {x, y, z},  = {, X, {x}, {y, z}} and   = {, Y, {x}, {z}, {x, z}}. Define f : 

(X, )  (Y, ) as follows: f(x) = z, f(y) = y and f(z) = x. Then f 1({y}) = {y} is not closed, -closed in 

X. Here the set {y} is closed in Y. Therefore, f is not continuous, -continuous.  
 

Example 5.9. Let X = Y = {x, y, z},  = {, X, {x}, {z}, {x, z}} and   = {, Y, {y, z}}. Define f : (X, ) 

 (Y, ) as follows: f(x) = x, f(y) = z and f(z) = y. Then f is g-continuous as well as g-continuous.  

Example 5.10. Let X = Y = {x, y, z},  = {, X, {y, z}} and   = {, Y, {x}}. Define f : (X, )  (Y, ) 

as follows: f(x) = y, f(y) = z and f(z) = x. Then f is g-continuous as well as g-continuous.  
 

Example 5.11. Let X = Y = {x, y, z},  = {, X, {x}, {z}, {x, z}} and   = {, Y, {x}, {y}, {x, y}}. 

Define f : (X, )  (Y, ) as follows: f(x) = x, f(y) = z and f(z) = y. Then f 1({x}) = {x}, f 1({y}) = {z}, f 
1({z}) = {y}, f 1({x, z}) = {x, y}, f 1({y, z}) = {y, z}. Since inverse image of every g-open set in Y is 

g-open in X. Therefore, f is g-irresolute as well as g-continuous. It is also g-continuous.  
 

Theorem 5.12. Let f : X → Y be a function.  

(a) If f is g-irresolute and X is g-T1/2 space, then f is -irresolute.  

(b) If f is g-continuous and X is g-T1/2 space, then f is -continuous.  

Proof. (a) Let V be -closed in Y. Since f is g-irresolute, f −1(V) is g-closed in X. Since X is g-T1/2 

space, f −1(V) is -closed in X. Hence f is -irresolute.  
 

(b) Let V be closed in Y. Since f is g-continuous, f−1(V) is g-closed in X. By assumption, it is -
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closed. Therefore f is -continuous.  
 

Definition 5.13. A function f : X → Y is called π-irresolute [2] if f −1(V) is -closed in X for each -

closed set V of Y .  

 

Definition 5.14. A function f : X → Y is called pre -closed if f(V) is -closed in Y for each -closed set 
V of X.  

 

Theorem 5.15. Let f : X → Y be -irresolute and pre -closed map. Then f(A) is g-closed in Y for 

every g-closed set A of X. 

Proof. Let A be g-closed set in X. Let f(A)  V where V is -open in Y . Then A  f −1(V) and A is 

g-closed in X implies -Cl(A)  f −1(V). Hence -Cl(f(A))  -Cl(f(-Cl(A))) = f(-Cl(A))  V. 

Therefore f(A) is g-closed in Y .  

 

Definition 5.16. A function f : X → Y is -open map [8] if f(V) is -open set in Y for every -open set V 
of X.  

 

Theorem 5.17. If f : X → Y is -irresolute and -open bijection, then f is g-irresolute.  

Proof. Let V be g-closed set in Y . Let f −1(V)  U where U is -open in X. Hence V  f(U) and f(U) is 

-open implies -Cl(V)  f(U). Since f is -irresolute, f −1(-Cl(V)) is -closed in X. Hence -Cl(f −1(V)) 

 -Cl(f −1(-Cl(V))) = f −1(-Cl(V))  U. Therefore f −1(V) is g-closed and thus f is g-irresolute.  
 

Theorem 5.18. Let f : X → Y be pre -closed and g-irresolute surjection. If X is g-T1/2 space, then Y 

is also a g-T1/2 space.  

Proof. Let F be g-closed set in Y. Since f is g-irresolute, f −1(F) is g-closed in X. Since X is g-

T1/2 space, f −1(F) is -closed in X and hence f(f −1 (F)) = F is -closed in Y. This shows that Y is g-T1/2 
space.  

 

6. Some Covering Properties  

 

Definition 6.1. A topological space X is said to be:  

(a) nearly compact [14] if every regular open cover of X has a finite subcover.  

(b) countably compact [4] if every open countable cover of X has a finite subcover.  

(c) nearly countably compact [7] if every countable cover by regular open sets has a finite subcover.  

(d) nearly Lindelof [6] if every cover by regular open sets has a countable subcover.  

(e) g-compact if every g-open cover of X has a finite subcover.  

(f) g-Lindelof if every cover by g-open sets has a countable subcover.  

(g) countably g-compact if every g-open countable cover of X has a finite subcover.  

 

Corollary 6.2. For a topological space X the followings hold:  

(a) If X is g-Lindelof, then X is Lindelof.  

(b) If X is g-compact, then X is compact.  

(c) If X is countably g-compact, then X is countably compact.  

(d) If X is g-compact, then X is g-Lindelof.  

(e) If X is g-compact, then X is nearly compact.  

(f) If X is g-compact, then X is nearly Lindelof.  

(g) If X is countably g-compact, then X is nearly countably compact.  
 

Definition 6.3. A function f : X → Y is called g-open if f(U) is g-closed in Y for each g-closed set 

in X.  

 

Definition 6.4. A function f : X → Y is called almost g-continuous if f −1(V) is g-closed in X for 
every regular closed set V of Y .  

 

Theorem 6.5. Every g-compact subset of a g-compact space is g-compact space relative to X.  

Proof. Straightforward. 
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Theorem 6.6. Let f : X → Y be a function. If f is πg-continuous surjection (resp. almost πg-continuous) 

and X is πg-compact space, then Y is compact (resp. nearly compact). 

Proof. Straightforward. 

 

Theorem 6.7. Let f : X → Y be a function and A ⊂ X. If f is πg-irresolute and A is πg-compact, then 

f(A) is πg-compact.  
Proof. Straightforward. 

 

Theorem 6.8. Let f : X → Y be a function. If f is g-open bijection and Y is g-compact, then X is 

g-compact.  
Proof. Straightforward. 

 

Remark 6.9. Every g-continuous function is almost g-continuous function.  

 

Theorem 6.10. Let f : X → Y be an almost g-continuous surjection.  

(a) If X is g-compact, then Y is nearly compact.  

(b) If X is g-Lindelof, then Y is nearly Lindelof.  

(c) If X is countably g-compact, then Y is nearly countably compact.  

Proof. Straightforward. 
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