πgη-CLOSED SETS AND SOME RELATED **TOPICS**

Hamant Kumar Department of Mathematics

Government Degree College, Bilaspur-Rampur, 244921, U. P. (India)

Abstract: In this paper, we introduce a new class of sets called $\pi g \eta$ -closed sets in topological spaces and investigate the relationship with other existing generalized closed sets. Moreover, we also introduce and studied the concepts of $\pi g\eta$ -continuous and $\pi g\eta$ -irresolute functions via $\pi g\eta$ -closed sets which are defined by me. We obtain some properties about $\pi g \eta$ -closed sets, $\pi g \eta$ -continuous and $\pi g \eta$ -irresolute functions, and $\pi g \eta$ -compactness.

2010 AMS Subject Classification: 54C08, 54C10, 54D10, 54D30.

Keywords: $\pi g \eta$ -closed, $\pi g \eta$ -continuity, $\pi g \eta$ -irresoluteness, $\pi g \eta$ -compactness.

1. Introduction

Many investigations related to generalized closed sets and generalized continuous functions have been published in various forms of closed sets and continuous functions. In 1937, Stone [15] introduced the notion of regular open sets. In 1965, Njastad [13] introduced the concept of α-open sets. In 1968, the notion of π -open sets were introduced by Zaitsev [18] which are weaker form of regular open sets in topological spaces. In 1969, Singal and Mathur [14] introduced and studied the concept of nearly compact spaces. In 1970, Levine [10] initiated the study of so called generalized closed (briefly g-closed) sets. In 1993, Maki et al. [12] introduced the concept of α -T₀ and α -T₀ spaces. In 1994, Maki et al. [11] introduced the notion of αg -closed sets. In 2000, Dontchev and Noiri [5] introduced the notion of πg -closed sets. In 2007, Arockiarani and Janaki [1] introduced the notion of $\pi g\alpha$ -closed sets in topological spaces. In 2009, Janaki [8] Studied πgα-closed sets in topology. In 2019, Subbulakshmi, Sumathi, Indirani [16] introduced and investigated the notion of η-open sets. Recently, Kumar and Sharma [9] introduced and investigated the notion of η -T_k (k = 0, 1, 2) and η -R_k (k = 0, 12) axioms in topological spaces.

2. Preliminaries

Throughout this paper, spaces (X, \mathfrak{I}) , (Y, σ) , and (Z, γ) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by Cl(A) and Int(A) respectively. A subset A is said to be regular open [15] (resp. regular closed [15]) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The finite union of regular open sets is said to be π -open [18]. The complement of a π -open set is said to be π -closed [18].

Definition 2.1. A subset A of a topological space (X, \mathfrak{I}) is said to be

- (i) α -open [13] if $A \subset Int(Cl(Int(A)))$.
- (ii) η -open [16] if $A \subset In(Cl(Int(A))) \cup Cl(Int(A))$.
- (iii) η -closed [16] if $A \supset Cl(Int(Cl(A))) \cup Int(Cl(A))$.

The complement of a α -open set is called α -closed. The intersection of all α -closed (resp. η -closed) sets containing A, is called α -closure (resp. η -closure) of A, and is denoted by α -Cl(A) (resp. η -Cl(A)). The η -interior of A, denoted by η -Int(A) is defined as union of all η -open sets contained in A. We denote the family of all η -open (resp. η -closed) sets of a topological space by η -O(X) (resp. η -C(X)).

Definition 2.2. A subset A of a space (X, \mathfrak{I}) is said to be

- (1) **generalized closed** (briefly **g-closed**) [10] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.
- (2) πg -closed [5] if Cl(A) \subset U whenever A \subset U and U is π -open in X.
- (3) α -generalized closed (briefly α g-closed) [11] if α -Cl(A) \subset U whenever A \subset U and U \in \mathfrak{I} .

- (4) $\pi g \alpha$ -closed [1] if α -Cl(A) \subset U whenever A \subset U and U is π -open in X.
- (5) **generalized** η -closed (briefly $g\eta$ -closed) [17] if η -Cl(A) \subset U whenever A \subset U and U $\in \mathfrak{I}$.
- (6) **g-open** (resp. π **g-open**, α **g-open**, π **ga-open**, π **gn-open**) set if the complement of A is g-closed (resp. π g-closed, α g-closed, π ga-closed, π ga-closed, π ga-closed).

Lemma 2.3. For any subsets A and B of a space (X, \Im) the following hold:

- (a) η -Cl(A) = A \cup [Cl(Int(Cl(A))) \cap Int(Cl(A))],
- (b) η -Cl(X A) = X η -Int(A),
- (c) $x \in \eta$ -Cl(A) if and only if $A \cap U \neq \emptyset$ for every $U \in \eta$ -O(X, x),
- (d) $A \in \eta$ -C(X) if and only if $A = \eta$ -Cl(A).

3. πgη-closed Sets

Definition 3.1. A subset A of a space (X, \mathfrak{F}) is said to be $\pi g \eta$ -closed if η -Cl(A) \subset U whenever A \subset U and U is π -open in X. The family of all $\pi g \eta$ -closed subsets of X will be denoted by $\pi g \eta$ -C(X).

Theorem 3.2. Every closed set is $\pi g \eta$ -closed.

Proof. Let A be a closed set in X. Let U be a π -open set in X such that $A \subset U$. Since A is closed, that is, Cl(A) = A, $Cl(A) \subset U$. But we have η - $Cl(A) \subset U$. Therefore η - $Cl(A) \subset U$. Hence A is $\pi g \eta$ -closed in X.

Theorem 3.3. For a topological space X the followings hold:

- (1) Every g-closed set is $\pi g \eta$ -closed.
- (2) Every πg -closed set is $\pi g \eta$ -closed.
- (3) Every α -closed set is $\pi g \eta$ -closed.
- (4) Every αg -closed set is $\pi g \eta$ -closed.
- (5) Every $\pi g \alpha$ -closed set is $\pi g \eta$ -closed.

Proof.

- (1) Let A be a g-closed set in X. Let U be a π -open set in X such that $A \subset U$. Since every π -open set is open and since A is g-closed, that is, $Cl(A) \subset U$. But we have η - $Cl(A) \subset Cl(A) \subset U$. Therefore η - $Cl(A) \subset U$. Hence A is $\pi g \eta$ -closed in X.
- (2) Let A be a πg -closed set in X. Let U be a π -open set in X such that $A \subset U$. Since A is πg -closed, that is, $Cl(A) \subset U$. But we have η - $Cl(A) \subset U$. Therefore η - $Cl(A) \subset U$. Hence A is $\pi g \eta$ -closed in X.
- (3) Let A be a α -closed set in X. Let U be a π -open set in X such that $A \subset U$. Since A is α -closed, that is, α -Cl(A) = A, α -Cl(A) \subset U. But we have η -Cl(A) \subset u. Therefore η -Cl(A) \subset U. Hence A is $\pi g \eta$ -closed in X.
- (4) Let A be a αg -closed set in X. Let U be a π -open set in X such that $A \subset U$. Since every π -open set is open and since A is αg -closed, that is, α -Cl(A) \subset U. But we have η -Cl(A) \subset α -Cl(A) \subset U. Therefore η -Cl(A) \subset U. Hence A is $\pi g \eta$ -closed in X.
- (5) Let A be a $\pi g \alpha$ -closed set in X. Let U be a π -open set in X such that $A \subset U$. Since A is $\pi g \alpha$ -closed, that is, α -Cl(A) \subset U. But we have η -Cl(A) \subset α -Cl(A) \subset U. Therefore η -Cl(A) \subset U. Hence A is $\pi g \eta$ -closed in X.
- **Remark 3.4.** From the above definitions, theorems and known results the relationship between $\pi g \eta$ -closed sets and some other existing generalized closed sets are implemented in the following Figure:

$$\begin{array}{cccc} closed & \Rightarrow & g\text{-closed} & \Rightarrow & \pi g\text{-closed} \\ & & & & \downarrow & & \downarrow \\ \alpha\text{-closed} & \Rightarrow & \alpha g\text{-closed} & \Rightarrow & \pi g\alpha\text{-closed} \\ & \downarrow & & \downarrow & & \downarrow \\ \eta\text{-closed} & \Rightarrow & g\eta\text{-closed} & \Rightarrow & \pi g\eta\text{-closed} \end{array}$$

Where none of the implications is reversible as can be seen from the following examples:

Example 3.5. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $A = \{a, b, c\}$ and $B = \{a, b, d\}$ are πg -closed as well as $\pi g \eta$ -closed but not closed.

Example 3.6. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then $A = \{c\}$ is $\pi g \alpha$ -closed as well as $\pi g \eta$ -closed. But it is neither closed nor g-closed. It is not πg -closed.

Example 3.7. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{c\}, \{d\}, \{c, d\}, \{b, c, d\}, X\}$. Then $A = \{b\}$ is g-closed, α g-closed, α g-closed, α g-closed, α g-closed, α g-closed, α g-closed. But it is closed.

Example 3.8. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$. Then $A = \{a, b\}$ is $\pi g \alpha$ -closed as well as $\pi g \eta$ -closed but not closed. But it is neither closed nor αg -closed.

Example 3.9. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Then $A = \{c\}$ is η -closed as well as $\pi g \eta$ -closed but not α -closed.

Example 3.10. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b, c\}, X\}$. Then $A = \{a, b\}$ is $g\eta$ -closed as well as $\pi g\eta$ -closed but not closed.

Theorem 3.11. For $\pi g \eta$ -closed sets of a space (X, \mathfrak{I}) the following properties hold:

- (a) Every finite union of $\pi g \eta$ -closed sets is always a $\pi g \eta$ -closed set.
- (b) Even a countable union of $\pi g \eta$ -closed sets need not be a $\pi g \eta$ -closed set.
- (c) Even a finite intersection of $\pi g \eta$ -closed sets may fail to be a $\pi g \eta$ -closed set.

Proof.

(a) Let A and B be any two $\pi g \eta$ -closed sets. Therefore η -Cl(A) \subset U and η -Cl(B) \subset U whenever A \subset U, B \subset U and U is π -open. Let A \cup B \subset U where U is π -open.

Since, η -Cl(A \cup B) \subset η -Cl(A) \cup η -Cl(B) \subset U, we have A \cup B is $\pi g \eta$ -closed.

- (b) Let R be the real line with the usual topology. Every singleton is $\pi g \eta$ -closed. However, $A = \{1 / i : i = 2, 3, \ldots\}$ is not $\pi g \eta$ -closed, since $A \subset (0, 1)$ which is π -open but η -Cl(A) $\not\subset (0, 1)$.
- (c) Let $X = \{a, b, c, d\}$ and let $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $A = \{a, b, c\}$ and $B = \{a, b, d\}$ are $\pi g \eta$ -closed sets. But $A \cap B = \{a, b\} \subset \{a, b\}$ which is π -open. η -Cl($A \cap B$) $\not\subset \{a, b\}$. Hence $A \cap B$ is not $\pi g \eta$ -closed.

Theorem 3.12: If A is $\pi g \eta$ -closed and B is any set $A \subset B \subset \eta$ -Cl(A) then B is $\pi g \eta$ -closed.

Proof: Since A is $\pi g \eta$ -closed, η -Cl(A) \subset U whenever A \subset U and U is π -open. Let B \subset U and U is π -open. Since B $\subset \eta$ -Cl(A), η -Cl(B) $\subset \eta$ -Cl(A) \subset U. Hence B is $\pi g \eta$ -closed.

Theorem 3.13. Let A be a $\pi g \eta$ -closed set in X. Then η -Cl(A) – A does not contain any nonempty π -closed set.

Proof. Let F be a nonempty π -closed set such that $F \subset \eta$ -Cl(A) - A. Then $F \subset \eta$ -Cl(A) \cap (X - A) \subset (X - A) implies $A \subset X - F$ where X - F is π -open. Therefore η -Cl(A) \subset X - F implies $F \subset (\eta$ -Cl(A) c . Now $F \subset \eta$ -Cl(A) \cap (η -Cl(A)) c implies F is empty.

Reverse implication does not hold.

Example 3.14. Let $X = \{a, b, c, d, e\}$ and let $\mathfrak{I} = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Let $A = \{c\}$ then η -Cl(A) = $\{c, d, e\}$, η -Cl(A) – $A = \{d, e\}$ does not contain any nonempty regular closed set but A is not $\pi g \eta$ -closed set.

Corollary 3.15. Let A be $\pi g \eta$ -closed. A is η -closed iff η -Cl(A) – A is π -closed.

Proof. Let A be η -closed set then A = η -Cl(A) implies η -Cl(A) – A = ϕ which is π -closed. Conversely, if η -Cl(A) – A is π -closed then A is η -closed.

Theorem 3.16. If A is π -open and $\pi g \eta$ -closed. Then A is η -closed and hence clopen.

Proof. Let A be regular open. Since A is $\pi g \eta$ -closed, η -Cl(A) \subset A implies A is η -closed. Hence A is closed. (Since every π -open η -closed set is closed). Therefore A is clopen.

Definition 3.17. Let (X, \mathfrak{F}) be a topological space, $A \subset X$ and $x \in X$. Then x is said to be a η -limit point of A iff every η -open set containing x contains a point of A different from x, and the set of all η -limit points of A is said to be the η - derived set of A and is denoted by $D_{\eta}(A)$.

Usual derived set of A is denoted by D(A).

The proof of the following result is analogous to the well known ones.

Lemma 3.18. Let (X,\mathfrak{T}) be a topological space and $A\subset X$. Then $\eta\text{-Cl}(A)=A\cup D_{\eta}(A)$.

Theorem 3.19. Let A and B be $\pi g \eta$ -closed sets in (X, \mathfrak{I}) such that $Cl(A) = \eta$ -Cl(A) and $Cl(B) = \eta$ -Cl(B). Then $A \cup B$ is $\pi g \eta$ -closed.

Proof. Let $A \cup B \subset U$ and U is π -open in (X, \mathfrak{J}) . Then η -Cl(A) \subset U and η -Cl(B) \subset U. Now, Cl(A \cup B) = Cl(A) \cup Cl(B) = η -Cl(A) \cup η -Cl(B) \subset U. But η -Cl(A \cup B) \subset Cl(A \cup B). So, η -Cl(A \cup B) \subset U and hence $A \cup B$ is $\pi g \eta$ -closed.

From the fact that $D_{\eta}(A) \subset D(A)$ and **Lemma 3.18** we have the following,

Remark 3.20. For any subset $A \subset X$ such that $D(A) \subset D_{\eta}(A)$. Then $Cl(A) = \eta - Cl(A)$.

Theorem 3.21. For a space X, the following are equivalent:

- (a) X is extremally disconnected,
- (b) Every subset of X is $\pi g \eta$ -closed,
- (c) The topology on X generated by $\pi g \eta$ -closed sets is the discrete ones.

Proof. (a) \Rightarrow (b).

Assume that X is extremally disconnected. Let $A \subset U$ where U is π -open in X. Since U is π -open, it is the finite union of regular open sets and X is extremally disconnected, U is finite union of clopen sets and hence U is clopen. Therefore η -cl(A) \subset cl(A) \subset cl(U) \subset U implies A is $\pi g \eta$ -closed.

$$(b) \Rightarrow (a)$$
.

Let A be a regular open set of X. Since A is $\pi g \eta$ -closed by **Theorem 3.16**, A is clopen. Hence X is extremally disconnected.

(b) \Leftrightarrow (c) is obvious.

4. $\pi g \eta$ -open sets

Definition 4.1. Let (X, \Im) be a topological space. A subset A of X is called **π-generalized η-open** (briefly **πgη-open**) iff its complement is **πgη-closed** set. We denote the family of all **πgη-open** (resp. **πgη-closed**) sets of a topological space by **πgη-O(X)** (resp. **πgη-C(X)**).

Lemma 4.2. If A be a subset of X, then

- (a) η -Cl(X A) = X η -Int(A).
- (b) η -Int(X A) = X η -Cl(A).

Theorem 4.3. A subset A of a space X is $\pi g \eta$ -open iff $F \subset \eta$ -Int(A) whenever F is π -closed and $F \subset A$. **Proof.** Let F be π -closed set such that $F \subset A$. Since X - A is $\pi g \eta$ -closed and $X - A \subset X - F$ where $F \subset \eta$ -Int(A). Conversely.

Let $F \subset \eta$ -Int(A) where F is π -closed and $F \subset A$. Since $F \subset A$ and X - F is π -open, η -Cl(X - A) = X - η -Int(A) \subset X - F. Therefore A is $\pi g \eta$ -open.

Theorem 4.4. If η -Int(A) \subset B \subset A and A π g η -open then B is π g η -open.

Proof: Since η -Int(A) \subset B \subset A, by **Theorem 3.12**, η -Cl(X – A) \supset (X – B) implies B is $\pi g \eta$ -open.

Remark 4.5. For any $A \subset X$, η -Int $(\eta$ -Cl $(A) - A) = \phi$.

Theorem 4.6. If $A \subset X$ is $\pi g \eta$ -closed then η -Cl(A) – A is $\pi g \eta$ -open.

Proof. Let A be $\pi g \eta$ -closed and F be a π -closed set such that $F \subset \eta$ -Cl(A) – A. By **Theorem 3.13**, $F = \emptyset$ implies $F \subset \eta$ -Int(η -Cl(A) – A)). By **Theorem 4.3**, η -cl(A) – A is $\pi g \eta$ -open.

Converse of the above theorem is not true.

Example 4.7. Let $X = \{a, b, c\}$ and let $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $A = \{b\}$. Then A is not $\pi g \eta$ -closed but η -Cl(A) $- A = \{a, b\}$ is $\pi g \eta$ -open.

Definition 4.8. A topological space X is called a $\pi g \eta$ - $T_{1/2}$ space if every $\pi g \eta$ -closed set is η -closed.

Theorem 4.9. Let (X, \mathfrak{I}) be a topological space.

- (a) η -O(X) $\subset \pi g \eta$ -O(X),
- (b) A space X is $\pi g \eta T_{1/2}$ iff $\eta O(X) = \pi g \eta O(X)$.

Proof. (a) Let A be a η -open set, then X - A is η -closed so X - A is $\pi g \eta$ -closed. Thus A is $\pi g \eta$ -open. Hence η -O(X) $\subset \pi g \eta$ -O(X).

(b) Necessity: Let (X, \Im) be $\pi g \eta - T_{1/2}$ space. Let A be $\pi g \eta$ -open. Then X - A is $\pi g \eta$ -closed. By hypothesis, X - A is η -closed. Thus A is η -open. Therefore $\eta - O(X) = \pi g \eta - O(X)$.

Sufficiency: Let η -O(X) = $\pi g \eta$ -O(X). Let A be $\pi g \eta$ -closed. Then X – A is $\pi g \eta$ -open. X – A is η -open. Hence A is η -closed. This implies (X, \mathfrak{F}) is $\pi g \eta$ -T_{1/2} space.

Lemma 4.10. Let A be a subset of X and $x \in X$. Then $x \in \eta$ -Cl(A) iff $V \cap \{x\} \neq \emptyset$ for every η -open set V containing x.

Theorem 4.11. For a topological space X the following are equivalent:

- (a) X is $\pi g \eta$ -T_{1/2} space.
- (b) Every singleton set is either π -closed or η -open.

Proof. (a) \Rightarrow (b): Let X be a $\pi g \eta$ -T_{1/2} space. Let $x \in X$ and assuming that $\{x\}$ is not π -closed. Then clearly $X - \{x\}$ is not π -open. Hence $X - \{x\}$ is trivially a $\pi g \eta$ -closed. Since X is $\pi g \eta$ -T_{1/2} space, $X - \{x\}$ is η -closed. Therefore $\{x\}$ is η -open.

(b) \Rightarrow (a): Assume every singleton set of X is either π -closed or η -open. Let A be a $\pi g \eta$ -closed set. Let $x \in \eta$ -Cl(A).

Case I: Let $\{x\}$ be π -closed. Suppose x does not belong to A. Then $x \in \eta$ -Cl(A) — A. By **Theorem 3.7**, $x \in A$. Hence η -Cl(A) — A.

Case II: Let $\{x\}$ be η -open. Since $x \in \eta$ -Cl(A), we have $A \cap \{x\} \neq \emptyset$ implies $x \in A$. Therefore η -Cl(A) \subset A. Therefore A is η -closed.

5. $\pi g \eta$ -continuous and $\pi g \eta$ -irresolute Functions

Definition 5.1. A function $f: X \to Y$ is called:

- (a) α -continuous [12] (resp. η -continuous [17]) if f $^{-1}(V)$ is α -closed (resp. η -closed) in X for every closed set V of Y,
- (b) **g-continuous** [3] (resp. α **g-continuous** [11], **g** η **-continuous** [17]) if f $^{-1}(V)$ is g-closed (resp. α g-closed, g η -closed) in X for every closed set V of Y,

(c) πg -continuous [5] (resp. $\pi g \alpha$ -continuous [1], $\pi g \eta$ -continuous) if $f^{-1}(V)$ is πg -closed (resp. $\pi g \alpha$ -closed, $\pi g \eta$ -closed) in X for every closed set V of Y,

Definition 5.2. A function $f: X \to Y$ is called η-irresolute [9] (resp. gη-irresolute [17], π gη-irresolute) if $f^{-1}(V)$ is η-closed (resp. gη-closed, π gη-closed) in X for every η-closed (resp. gη-closed, π gη-closed) set V of Y.

Proposition 5.3. Every $\pi g \eta$ -irresolute function is $\pi g \eta$ -continuous.

Remark 5.4. From the above definitions, proposition and known results, we have following diagram:

Where none of the implications is reversible as can be seen from the following examples:

Example 5.5. Let $X = \{x, y, z\}$, $\mathfrak{I} = \{\phi, X, \{x\}\}$, $Y = \{a, b\}$ and $\rho = \{\phi, Y, \{a\}\}$. Define $f : (X, \mathfrak{I}) \to (Y, \rho)$ as follows: f(x) = f(z) = b and f(y) = x. Then f is g-continuous as well as $g\eta$ -continuous. It is also $\pi g \eta$ -continuous but not continuous.

Example 5.6. Let $X = \{x, y, z\}$, $\mathfrak{I} = \{\phi, X, \{x\}, \{y\}, \{x, y\}\}\$ and $f : (X, \mathfrak{I}) \to (X, \mathfrak{I})\$ defined as follows: f(x) = f(y) = x and f(z) = z. Then f is π -continuous as well as continuous.

Example 5.7. Let $X = Y = \{x, y, z\}$, $\mathfrak{I} = \{\phi, X, \{x\}, \{z\}, \{x, z\}\}\)$ and $\rho = \{\phi, Y, \{x\}, \{y\}, \{x, y\}\}\}$. Define $f: (X, \mathfrak{I}) \to (Y, \rho)$ as follows: f(x) = x, f(y) = z and f(z) = y. Then $f^{-1}(\{z\}) = \{y\}$, $f^{-1}(\{x, z\}) = \{x, y\}$, $f^{-1}(\{y, z\}) = \{y, z\}$. Therefore, f is $g\eta$ -continuous as well as $\pi g\eta$ -continuous.

Example 5.8. Let $X = Y = \{x, y, z\}$, $\mathfrak{I} = \{\phi, X, \{x\}, \{y, z\}\}$ and $\rho = \{\phi, Y, \{x\}, \{z\}, \{x, z\}\}$. Define $f: (X, \mathfrak{I}) \to (Y, \rho)$ as follows: f(x) = z, f(y) = y and f(z) = x. Then $f^{-1}(\{y\}) = \{y\}$ is not closed, α -closed in X. Here the set $\{y\}$ is closed in Y. Therefore, f is not continuous, α -continuous.

Example 5.9. Let $X = Y = \{x, y, z\}$, $\mathfrak{I} = \{\phi, X, \{x\}, \{z\}, \{x, z\}\}$ and $\rho = \{\phi, Y, \{y, z\}\}$. Define $f : (X, \mathfrak{I}) \to (Y, \rho)$ as follows: f(x) = x, f(y) = z and f(z) = y. Then f is $g\eta$ -continuous as well as $\pi g\eta$ -continuous. **Example 5.10**. Let $X = Y = \{x, y, z\}$, $\mathfrak{I} = \{\phi, X, \{y, z\}\}$ and $\rho = \{\phi, Y, \{x\}\}$. Define $f : (X, \mathfrak{I}) \to (Y, \rho)$ as follows: f(x) = y, f(y) = z and f(z) = x. Then f is $g\eta$ -continuous as well as $\pi g\eta$ -continuous.

Example 5.11. Let $X = Y = \{x, y, z\}$, $\mathfrak{I} = \{\phi, X, \{x\}, \{z\}, \{x, z\}\}$ and $\rho = \{\phi, Y, \{x\}, \{y\}, \{x, y\}\}\}$. Define $f : (X, \mathfrak{I}) \to (Y, \rho)$ as follows: f(x) = x, f(y) = z and f(z) = y. Then $f^{-1}(\{x\}) = \{x\}$, $f^{-1}(\{y\}) = \{z\}$, $f^{-1}(\{z\}) = \{y\}$, $f^{-1}(\{x\}) = \{x\}$, $f^{-1}(\{y, z\}) = \{y, z\}$. Since inverse image of every gη-open set in Y is gη-open in X. Therefore, f is gη-irresolute as well as gη-continuous. It is also $\pi g \eta$ -continuous.

Theorem 5.12. Let $f: X \to Y$ be a function.

- (a) If f is $\pi g \eta$ -irresolute and X is $\pi g \eta$ - $T_{1/2}$ space, then f is η -irresolute.
- (b) If f is $\pi g \eta$ -continuous and X is $\pi g \eta$ - $T_{1/2}$ space, then f is η -continuous.

Proof. (a) Let V be η -closed in Y. Since f is $\pi g \eta$ -irresolute, $f^{-1}(V)$ is $\pi g \eta$ -closed in X. Since X is $\pi g \eta$ - $T_{1/2}$ space, $f^{-1}(V)$ is η -closed in X. Hence f is η -irresolute.

(b) Let V be closed in Y. Since f is $\pi g \eta$ -continuous, $f^{-1}(V)$ is $\pi g \eta$ -closed in X. By assumption, it is η -

closed. Therefore f is η -continuous.

Definition 5.13. A function $f: X \to Y$ is called π -irresolute [2] if $f^{-1}(V)$ is π -closed in X for each π -closed set V of Y.

Definition 5.14. A function $f: X \to Y$ is called **pre** η -closed if f(V) is η -closed in Y for each η -closed set V of X.

Theorem 5.15. Let $f: X \to Y$ be π -irresolute and pre η -closed map. Then f(A) is $\pi g \eta$ -closed in Y for every $\pi g \eta$ -closed set A of X.

Proof. Let A be $\pi g \eta$ -closed set in X. Let $f(A) \subset V$ where V is π -open in Y . Then $A \subset f^{-1}(V)$ and A is $\pi g \eta$ -closed in X implies η -Cl(A) $\subset f^{-1}(V)$. Hence η -Cl(f(A)) $\subset \eta$ -Cl($f(\eta$ -Cl(A)) $\subset f(\eta)$. Therefore f(A) is $\pi g \eta$ -closed in Y .

Definition 5.16. A function $f: X \to Y$ is π -open map [8] if f(V) is π -open set in Y for every π -open set V of X.

Theorem 5.17. If $f: X \to Y$ is η -irresolute and π -open bijection, then f is $\pi g \eta$ -irresolute.

Proof. Let V be $\pi g \eta$ -closed set in Y . Let $f^{-1}(V) \subset U$ where U is π -open in X. Hence $V \subset f(U)$ and f(U) is π -open implies η -Cl(V) $\subset f(U)$. Since f is η -irresolute, $f^{-1}(\eta$ -Cl(V)) is η -closed in X. Hence η -Cl($f^{-1}(V)$) $\subset \eta$ -Cl($f^{-1}(\eta$ -Cl(V))) = $f^{-1}(\eta$ -Cl(V)) $\subset U$. Therefore $f^{-1}(V)$ is $\pi g \eta$ -closed and thus f is $\pi g \eta$ -irresolute.

Theorem 5.18. Let $f: X \to Y$ be pre η -closed and $\pi g \eta$ -irresolute surjection. If X is $\pi g \eta$ - $T_{1/2}$ space, then Y is also a $\pi g \eta$ - $T_{1/2}$ space.

Proof. Let F be $\pi g \eta$ -closed set in Y. Since f is $\pi g \eta$ -irresolute, $f^{-1}(F)$ is $\pi g \eta$ -closed in X. Since X is $\pi g \eta$ - $T_{1/2}$ space, $f^{-1}(F)$ is η -closed in X and hence $f(f^{-1}(F)) = F$ is η -closed in Y. This shows that Y is $\pi g \eta$ - $T_{1/2}$ space.

6. Some Covering Properties

Definition 6.1. A topological space X is said to be:

- (a) **nearly compact** [14] if every regular open cover of X has a finite subcover.
- (b) **countably compact** [4] if every open countable cover of X has a finite subcover.
- (c) **nearly countably compact** [7] if every countable cover by regular open sets has a finite subcover.
- (d) **nearly Lindelof** [6] if every cover by regular open sets has a countable subcover.
- (e) $\pi g \eta$ -compact if every $\pi g \eta$ -open cover of X has a finite subcover.
- (f) $\pi g \eta$ -Lindelof if every cover by $\pi g \eta$ -open sets has a countable subcover.
- (g) **countably \pi g \eta-compact** if every $\pi g \eta$ -open countable cover of X has a finite subcover.

Corollary 6.2. For a topological space X the followings hold:

- (a) If X is $\pi g \eta$ -Lindelof, then X is Lindelof.
- (b) If X is $\pi g \eta$ -compact, then X is compact.
- (c) If X is countably $\pi g \eta$ -compact, then X is countably compact.
- (d) If X is $\pi g \eta$ -compact, then X is $\pi g \eta$ -Lindelof.
- (e) If X is $\pi g \eta$ -compact, then X is nearly compact.
- (f) If X is $\pi g \eta$ -compact, then X is nearly Lindelof.
- (g) If X is countably $\pi g \eta$ -compact, then X is nearly countably compact.

Definition 6.3. A function $f: X \to Y$ is called $\pi g \eta$ -open if f(U) is $\pi g \eta$ -closed in Y for each $\pi g \eta$ -closed set in X.

Definition 6.4. A function $f: X \to Y$ is called **almost \pi g \eta-continuous** if $f^{-1}(V)$ is $\pi g \eta$ -closed in X for every regular closed set V of Y.

Theorem 6.5. Every $\pi g \eta$ -compact subset of a $\pi g \eta$ -compact space is $\pi g \eta$ -compact space relative to X. **Proof**. Straightforward.

Theorem 6.6. Let $f: X \to Y$ be a function. If f is $\pi g \eta$ -continuous surjection (resp. almost $\pi g \eta$ -continuous) and X is $\pi g \eta$ -compact space, then Y is compact (resp. nearly compact).

Proof. Straightforward.

Theorem 6.7. Let $f: X \to Y$ be a function and $A \subset X$. If f is $\pi g \eta$ -irresolute and A is $\pi g \eta$ -compact, then f(A) is $\pi g \eta$ -compact.

Proof. Straightforward.

Theorem 6.8. Let $f: X \to Y$ be a function. If f is $\pi g \eta$ -open bijection and Y is $\pi g \eta$ -compact, then X is πgη-compact.

Proof. Straightforward.

Remark 6.9. Every $\pi g \eta$ -continuous function is almost $\pi g \eta$ -continuous function.

Theorem 6.10. Let $f: X \to Y$ be an almost $\pi g \eta$ -continuous surjection.

- (a) If X is $\pi g \eta$ -compact, then Y is nearly compact.
- (b) If X is $\pi g \eta$ -Lindelof, then Y is nearly Lindelof.
- (c) If X is countably $\pi g \eta$ -compact, then Y is nearly countably compact.

Proof. Straightforward.

References

- 1. Arockiarani and C. Janaki, πgα-closed set and Quasi α-normal spaces, Acta Ciencia Indica Vol. **XXXIII** M. no. 2, (2007), 657-666.
- 2. B. S. Ayhan and M. Ö. Mugla, On πge-closed sets and related topics Article in Journal of Advanced Studies in Topology, (2016), 1-8.
- 3. K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem, Fac, Kochi. Univ. Ser. A. Math. 12(1991), 5-13.
- 4. N. Bourbaki, Elements of mathematics:general topology, Part 1, Second ed., Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1966.
- 5. J. Dontchev and T. Noiri, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar. 89 (2000), no. 3,
- **6**. E. Ekici, Generalizations of perfectly continuous, regular set connected and clopen functions, Acta Math. Hungar. 107 (2005), no. 3, 193–206.
- 7. N. Ergun, On nearly paracompact spaces, Istanbul U niv. Fen. Mec. Ser. A. 45 (1980), 65-87.
- 8. C. Janaki, Studies on $\pi g\alpha$ -closed sets in topology, Ph. D. Thesis, Bharathiar University Coimbatore, India, 2009.
- 9. H. Kumar and M. C. Sharma, η-separation axioms in topological spaces, Jour. Of Emerging Tech. and Innov. Res. Vol. 8, Issue 5, (2021), 516-524.
- 10. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- 11. H. Maki, K. Balachandran, and R. Devi, Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math. 15 (1994), 51–63.
- 12. H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed., Part-III, 42(1993), 13-21.
- 13. O. Njastad, On some class of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- 14. M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital. 4 (1969), no. 2, 702–710.
- 15. M. H. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.
- **16**. D. Subbulakshmi, K. Sumathi, K. Indirani, η-open sets in topological spaces, International Jour. of Innovative and Exploring Engineering, Vol. 8, Issue 10S, 2019, 276-282.
- 17. D. Subbulakshmi, K. Sumathi, K. Indirani, gn-continuous in topological spaces, International Jour. of Innovative and Exploring Engineering, Vol. 8, Issue 3, 2019, 677-282.
- 18. V. Zaitsey, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.